首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spectroscopic and optical characterization of porphyrin chromophores incorporated into ultrathin polyimide films
Authors:Ogi Takeo  Kinoshita Ryoji  Ito Shinzaburo
Institution:Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan.
Abstract:Polyamic acid (PAA) containing free-base porphyrin and zinc(II) porphyrin chromophores was synthesized by copolymerization of diphenylether-type tetracarboxylic dianhydride and diamines. The monolayer of the alkylamine salts of PAA (PAASs) at the air/water interface was deposited on solid substrates by the Langmuir-Blodgett (LB) technique. The PAAS LB films thus obtained were converted to polyimide (PI) LB films by chemical treatment. The fluorescence of porphyrin moieties in the PI LB film was observed, because of the weak electron-accepting properties of the diphenylether unit. Therefore, the photophysically important processes, such as photoinduced electron transfer, excitation energy transfer, and excitation energy migration could be investigated in relation to the layered nanostructures of the ultrathin PI films. The fluorescence spectrum suggested that the aggregation of porphyrin moieties in the PI LB films was effectively prevented by the use of polymeric films. The surface plasmon (SP) measurement showed that the thickness of the monolayers was 0.9-1.0 nm for PAAS films and 0.32-0.40 nm on average for PI LB films. The absorption dichroism of the Soret band of porphyrin indicated that porphyrin moieties in the PAAS and PI LB films are oriented in parallel with the substrate. These results showed that the orientation and the spatial distribution of porphyrin units can be efficiently regulated in the PI LB films in a nanometer dimension.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号