首页 | 本学科首页   官方微博 | 高级检索  
     检索      

超临界水冷堆燃料包壳材料的辐照损伤研究进展
引用本文:郑中成,郭立平,唐睿.超临界水冷堆燃料包壳材料的辐照损伤研究进展[J].原子核物理评论,2017,34(2):211-218.
作者姓名:郑中成  郭立平  唐睿
作者单位:1.武汉大学物理科学与技术学院, 武汉 430072;
基金项目:国家国际科技合作专项(2015DFR60370);国家自然科学基金资助项目(11275140,U1532134)
摘    要:超临界水冷堆(SCWR)是第四代核电站的主力堆型之一,高温、高压、超临界水环境下的辐照损伤问题是其燃料包壳材料面临的最大挑战。SCWR燃料包壳候选材料主要包括锆合金、奥氏体不锈钢、铁素体/马氏体不锈钢、镍基合金、ODS合金五大类,奥氏体不锈钢是最有希望的候选材料。介绍了近年来在这个领域国际上的主要研究进展。作者所在团队也对多种SCWR的候选材料进行了辐照损伤研究,包括:镍基合金C-276和718、铁素体/马氏体钢P92、奥氏体不锈钢AL-6XN和HR3C。对AL-6XN的氢离子辐照实验发现,辐照产生的缺陷主要是间隙型位错环,伯格斯矢量为1/3<111>,在较高剂量(5~7 dpa)辐照下,出现空洞肿胀。在氢滞留的影响下,位错环有着独特的演化规律,总结提出了位错环的四阶段演化过程。The Supercritical Water-cooled Reactor (SCWR) is one of the prior Generation IV advanced reactors. Irradiation damage is one of the key issues of fuel cladding materials which will suffer serious environment, such as high temperature, high pressure, high irradiation and supercritical water. The candidate materials contain zirconium alloys, austenitic stainless steels, ferritic/martensitic stainless steels, Ni-base alloys and ODS alloys. Austenitic stainless steels are the most promising materials. This paper summarized the international researches on irradiation effects in fuel cladding materials for SCWR. The group of authors also has done many researches in this field, including nickel-base alloy C-276 and 718, ferritic/martensitic steel P92 and austenitic stainless steel AL-6XN and HR3C. In AL-6XN austenitic stainless steels irradiated by hydrogen ions, dislocation loops were the dominant irradiation defects. At higher irradiation dose (5~7 dpa), the voids were found. All the dislocation loops were confirmed to be 1/3<111> interstitial type dislocation loops, and four evolution stages of dislocation loops with hydrogen retention were suggested.

关 键 词:超临界水冷堆    燃料包壳材料    辐照损伤    中子辐照
收稿时间:2016-06-05

Research Development of Irradiation Damage on Fuel Cladding Materials for SCWR
ZHENG Zhongcheng,GUO Liping,TANG Rui.Research Development of Irradiation Damage on Fuel Cladding Materials for SCWR[J].Nuclear Physics Review,2017,34(2):211-218.
Authors:ZHENG Zhongcheng  GUO Liping  TANG Rui
Institution:1.School of Physics and Technology, Wuhan University, Wuhan 430072, China;2.Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610041, China
Abstract:The Supercritical Water-cooled Reactor (SCWR) is one of the prior Generation IV advanced reactors. Irradiation damage is one of the key issues of fuel cladding materials which will suffer serious environment, such as high temperature, high pressure, high irradiation and supercritical water. The candidate materials contain zirconium alloys, austenitic stainless steels, ferritic/martensitic stainless steels, Ni-base alloys and ODS alloys. Austenitic stainless steels are the most promising materials. This paper summarized the international researches on irradiation effects in fuel cladding materials for SCWR. The group of authors also has done many researches in this field, including nickel-base alloy C-276 and 718, ferritic/martensitic steel P92 and austenitic stainless steel AL-6XN and HR3C. In AL-6XN austenitic stainless steels irradiated by hydrogen ions, dislocation loops were the dominant irradiation defects. At higher irradiation dose (5~7 dpa), the voids were found. All the dislocation loops were confirmed to be 1/3<111> interstitial type dislocation loops, and four evolution stages of dislocation loops with hydrogen retention were suggested.
Keywords:supercritical water-cooled reactor  fuel cladding material  irradiation damage  neutron irradiation
本文献已被 CNKI 等数据库收录!
点击此处可从《原子核物理评论》浏览原始摘要信息
点击此处可从《原子核物理评论》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号