首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biochemical Properties and Potential Applications of a Solvent-Stable Protease from the High-Yield Protease Producer <Emphasis Type="Italic">Pseudomonas aeruginosa</Emphasis> PT121
Authors:Xiao-Yu Tang  Bin Wu  Han-Jie Ying  Bing-Fang He
Institution:(1) State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing, 210009, China;(2) College of Pharmaceutical Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing, 210009, Jiangsu, China;
Abstract:An organic solvent-stable protease from Pseudomonas aeruginosa PT121 was purified in a single step with 55% recovery by hydrophobic interaction chromatography on a Phenyl Sepharose High Performance matrix. The purified protease was homogenous on SDS-PAGE and had an estimated molecular mass of 33 kDa. The optimal pH and temperature conditions for enzyme activity were 8.0 and 60°C, respectively. The enzyme was classified as a metalloprotease based on its strong inhibition by EDTA and 1,10-phenanthroline and exhibited good stability across a broad pH range (6.0–11.0). The protease was quite stable in the presence of various water-miscible organic solvents. This is a unique property of the protease which makes it an ideal choice for application in aqueous-organic phase organic synthesis including peptides synthesis. The synthetic activity of the protease was tested using N-carbobenzoxy-l-asparagine (Z-Asp) and l-phenylalaninamide (Phe-NH2) as substrate in the presence of various water-miscible organic solvents for aspartame precursor synthesis. The highest yield was obtained in the presence of 50% DMSO (91%). The synthesis rate in the presence of DMSO was also much higher than the rates in the other tested organic solvents, and the initial rates of Z-Asp-Phe-NH2 synthesis in mixtures of various water-miscible organic solvents, with the exception of ethanol, correlated with the yields of Z-Asp-Phe-NH2. Furthermore, the PT121 protease was able to use various carboxyl components (Z-AA) and Phe-NH2 as substrates to catalyze the syntheses of the dipeptides, indicating that this protease has a broad specificity for carboxylic acid residue.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号