首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Supercritical and subcritical dynamic flow-induced instabilities of a small-scale wind turbine blade placed in uniform flow
Institution:1. Department of Mechatronics Engineering, German University in Cairo, Cairo, Egypt;2. Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
Abstract:There is a growing interest in extracting more power per turbine by increasing the rotor size in offshore wind turbines. As a result, the turbine blades will become longer and therefore more flexible, and a flexible blade is susceptible to flow-induced instabilities. In order to design and build stable large wind turbine blades, the onset of possible flow-induced instabilities should be considered in the design process. Currently, there is a lack of experimental work on flow-induced instabilities of wind turbine blades. In the present study, a series of experiments were conducted and flow-induced instabilities were observed in wind turbine blades. A small-scale flexible blade based on the NREL 5 MW reference wind turbine blade was built using three-dimensional printing technique. The blade was placed in the test section of a wind tunnel and was subjected to uniform oncoming flow, representing the case of a parked wind turbine blade. The blade?s tip displacement was measured using a non-contacting displacement measurement device as the oncoming wind speed was increased. At a critical wind speed, the blade became unstable and experienced limit cycle oscillations. The amplitude of these oscillations increased with increasing wind speed. Both supercritical and subcritical dynamic instabilities were observed. The instabilities were observed at different angles of attack and for blades both with and without a geometric twist. It was found that the blade twist had a significant influence on the observed instability: a blade without a twist experienced a strong subcritical instability.
Keywords:Wind turbine blades  Experiments  Supercritical  Subcritical  Dynamic flow-induced instability  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号