Columnar discotics in confined geometries |
| |
Authors: | J. Kopitzke J. H. Wendorff B. Glusen |
| |
Affiliation: | College of Optics and Photonics , University of Central Florida , Orlando, FL 32816, USA |
| |
Abstract: | ![]() The influence of geometric confinement on the state of order and on the glass relaxation process was investigated for a triphenylene derivative able to display a highly ordered plastic columnar phase in the bulk. The compound was incorporated into porous glasses - characterized by a narrow size distribution - with average pore diameters of 20, 7.5, 5 and 2.5 nm. The X-ray diagrams revealed the presence of a hexagonal order, yet the lattice spacing is significantly reduced with decreasing pore size and the reflections become broad. The X-ray doublet reflection, superimposed on the halo which is characteristic for the bulk plastic columnar phase, is absent in all cases. It is replaced by a single broad intracolumnar reflection which indicates that the confinement destabilizes the plastic phase in favour of the hexagonal ordered phase. A further observation is that the intracolumnar correlation length is reduced with decreasing pore size. The confinement was furthermore found to cause a transition from a strong glass (bulk material) to a fragile glass former, obviously induced by the structural modification. |
| |
Keywords: | |
|
|