首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oxo-hydroxy tautomerism of 5-fluorouracil: water-assisted proton transfer
Authors:Markova Nadezhda  Enchev Venelin  Timtcheva Iliana
Institution:Institute of Organic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Abstract:Post-Hartree-Fock ab initio quantum chemical calculations were performed for 5-fluorouracil in the gas phase and in a three-water cluster. Full geometry optimizations of the 5-fluorouracil-water complexes were carried out at the MP2/6-31+G(d,p) level of theory. MP4/6-31+G(d,p)//MP2/6-31+G(d,p) and MP4/6-31++G(d,p)//MP2/6-31+G(d,p) single-point calculations were performed to obtain more accurate energies. In water solution, 5-fluorouracil exists mainly in the 2,4-dioxo form (A). We propose that the populations of the 2-hydroxy-4-oxo (B) and 4-hydroxy-2-oxo (D) tautomers are 1 x 10(-4)% and 3.9 x 10(-8)%, respectively, on the basis of the relative stabilities of the tautomers calculated at the MP4/6-31++G(d,p)//MP2/6-31+G(d,p) level of theory. A profound difference between isolated and hydrated 5-fluorouracil is noted for the height of the tautomerization barrier. In the absence of water, the process of proton transfer is very slow. The addition of water molecules decreases the barrier by 2.3 times, making the process much faster. The minimum energy path (MP2/6-31+G(d,p)) for water-assisted proton transfer in trihydrated 5-fluorouracil was followed. CNDO/S-CI calculations predict singlet pi-pi(*) electron transitions at 312 nm for B and at 318 nm for D. The fluorescence spectrum of 5-fluorouracil in water confirms the presence of the hydroxy tautomer.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号