首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Natural compounds as potential Hsp90 inhibitors for breast cancer-Pharmacophore guided molecular modelling studies
Institution:1. Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea;2. College of Pharmacy, Inje University, 197 Inje-ro, Gimhae, Gyeongnam, 50834, Republic of Korea;3. Department of Internal Medicine, College of Medicine, Busan Paik Hospital, Inje University, Gyeongnam, Republic of Korea
Abstract:Breast cancer is one of the major impediments affecting women globally. The ATP-dependant heat shock protein 90 (Hsp90) forms the central component of molecular chaperone machinery that predominantly governs the folding of newly synthesized peptides and their conformational maturation. It regulates the stability and function of numerous client proteins that are frequently upregulated and/or mutated in cancer cells, therefore, making Hsp90 inhibition a promising therapeutic strategy for the development of new efficacious drugs to treat breast cancer. In the present in silico investigation, a structure-based pharmacophore model was generated with hydrogen bond donor, hydrogen bond acceptor and hydrophobic features complementary to crucial residues Ala55, Lys58, Asp93, Ile96, Met98 and Thr184 directed at inhibiting the ATP-binding activity of Hsp90. Subsequently, the phytochemical dataset of 3210 natural compounds was screened to retrieve the prospective inhibitors after rigorous validation of the model pharmacophore. The retrieved 135 phytocompounds were further filtered by drug-likeness parameters including Lipinski’s rule of five and ADMET properties, then investigated via molecular docking-based scoring. Molecular interactions were assessed using Genetic Optimisation for Ligand Docking program for 95 drug-like natural compounds against Hsp90 along with two clinical drugs as reference compounds – Geldanamycin and Radicicol. Docking studies revealed three phytochemicals are better than the investigated clinical drugs. The reference and hit compounds with dock scores of 48.27 (Geldanamycin), 40.90 (Radicicol), 73.04 (Hit1), 72.92 (Hit2) and 68.12 (Hit3) were further validated for their binding stability through molecular dynamics simulations. We propose that the non-macrocyclic scaffolds of three identified phytochemicals might aid in the development of novel therapeutic candidates against Hsp90-driven cancers.
Keywords:Hsp90 inhibitors  Breast cancer  Natural compounds  Structure-based pharmacophore modelling  Molecular dynamics simulations
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号