首页 | 本学科首页   官方微博 | 高级检索  
     


Periodic sticking motion in a two-degree-of-freedom impact oscillator
Authors:D.J. Wagg
Affiliation:Department of Mechanical Engineering, University of Bristol, Queens Building, University Walk, Bristol BS8 1TR, UK
Abstract:Periodic sticking motions can occur in vibro-impact systems for certain parameter ranges. When the coefficient of restitution is low (or zero), the range of periodic sticking motions can become large. In this work the dynamics of periodic sticking orbits with both zero and non-zero coefficient of restitution are considered. The dynamics of the periodic orbit is simulated as the forcing frequency of the system is varied. In particular, the loci of Poincaré fixed points in the sticking plane are computed as the forcing frequency of the system is varied. For zero coefficient of restitution, the size of the sticking region for a particular choice of parameters appears to be maximized. We consider this idea by computing the sticking region for zero and non-zero coefficient of restitution values. It has been shown that periodic sticking orbits can bifurcate via the rising/multi-sliding bifurcation. In the final part of this paper, we describe three types of post-bifurcation behavior which occur for the zero coefficient of restitution case. This includes two types of rising bifurcation and a border orbit crossing event.
Keywords:Impact   2DOF Oscillator   Periodic   Sticking   Multi-sliding
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号