首页 | 本学科首页   官方微博 | 高级检索  
     

大豆叶面积指数的高光谱估算方法比较
引用本文:杨飞,张柏,宋开山,王宗明,刘殿伟,刘焕军,李方,李凤秀,国志兴,靳华安. 大豆叶面积指数的高光谱估算方法比较[J]. 光谱学与光谱分析, 2008, 28(12): 2951-2955. DOI: 10.3964/j.issn.1000-0593(2008)12-2951-05
作者姓名:杨飞  张柏  宋开山  王宗明  刘殿伟  刘焕军  李方  李凤秀  国志兴  靳华安
作者单位:1. 中国科学院东北地理与农业生态研究所,吉林 长春 130012
2. 中国科学院研究生院,北京 100039
基金项目:中国科学院东北振兴科技行动计划重点项目,国家自然科学基金,中国科学院知识创新工程重要方向项目,中国科学院资源环境领域野外台站研究基金 
摘    要:叶面积指数(leaf area index,LAI)是重要的生物物理参数,亦是各种生态模型、生产力模型以及碳循环研究等的重要生物物理参量,因此具有重要的研究意义。通过分析大量实测数据,选用归一化植被指数(normalized difference vegetation index,NDVI)和比值植被指数(ratio vegetation index,RVI)、主成分分析(principcal component analysis, PCA)、神经网络(neural network NN)三种方法对大豆使LAI进行了估算,比较分析了三种方法的估算结果。研究结果表明,植被指数法(NDVI,RVI),主成分分析,神经网络方法LAI都取得了较为理想的结果,验证模型的确定性系数分别达0.758和0.753, 0.954, 0.899,其中主成分分析方法和神经网络方法精度较高,主成分分析方法验证模型的稳定性更好,其验证模型的RMSE为0.267,明显低于两个植被指数(NDVI和RVI的RMSE分别为0.594和0.616)和神经网络(RMSE=0.413)。当叶面积指数较小时,植被指数能够较好地去除土壤、大气等条件影响,并精确估算LAI;当叶面积指数较大时,主成分分析能够弥补植被指数饱和的缺陷,得到很好的LAI估算效果。神经网络受LAI大小的影响效果居中,其对叶面积指数较小和较大时具有一致的估算效果,具有较好的应用潜力。

关 键 词:大豆  LAI  NDVI  RVI  主成分分析  神经网络  
收稿时间:2007-05-28

Comparison of Methods for Estimating Soybean Leaf Area Index
YANG fei,ZHANG Bai,SONG Kai-shan,WANG Zong-ming,LIU Dian-wei,LIU Huan-jun,LI Fang,LI Feng-xiu,GUO Zhi-xing,JIN Hua-an. Comparison of Methods for Estimating Soybean Leaf Area Index[J]. Spectroscopy and Spectral Analysis, 2008, 28(12): 2951-2955. DOI: 10.3964/j.issn.1000-0593(2008)12-2951-05
Authors:YANG fei  ZHANG Bai  SONG Kai-shan  WANG Zong-ming  LIU Dian-wei  LIU Huan-jun  LI Fang  LI Feng-xiu  GUO Zhi-xing  JIN Hua-an
Affiliation:1. Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Changchun 130012, China2. Graduate School of Chinese Academy of Sciences,Beijing 100039, China
Abstract:Leaf area index(LAI) is an important biophysical parameter,and is the critical variable in many ecology models,productivity models and carbon circulation study.Based on the field experiment data,an evaluation of soybean LAI retrieval methods was conducted using NDVI(normalized difference vegetation index) and RVI(ratio vegetation index),principle component analysis(PCA) and neural network(NN) methods,and the estimate effects of three methods were compared.The results showed that the three methods have an ideal effect on the LAI estimation.R2 of validated model of vegetation indices,PCA,NN were 0.753(NDVI),0.758(RVI),0.883,0.899.PCA and NN methods were better with higher precision,and PCA method was the best,as its RMSE(0.202) was slower than the two vegetation indices(RMSEs of NDVI and RVI were 0.594 and 0.616) and NN(RMSE was 0.413) method.While the LAI was small, vegetation indices were obvious for removing the noise from soil and atmospheric effect and obtained the good evaluation result.PCA showed better effect for all LAI.LAI affected the estimating result of NN method moderately.As for the NN method,modeled LAI value and measured LAI regression formula slope was the nearest to 1 with R2 of 0.949,which showed a great potential for LAI estimating.As a whole,PCA and NN methods were the prior selection for LAI estimation,which should be attributed to the application of hyperspectral information of many bands.
Keywords:Soybean  LAI  NDVI  RVI  PCA  NN
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号