首页 | 本学科首页   官方微博 | 高级检索  
     检索      

镍锡析氢活性阴极的电化学制备及其在碱性溶液中的电催化机理
引用本文:曹寅亮,李志林,王峰,刘景军,吉静,王建军,张良虎,覃事永.镍锡析氢活性阴极的电化学制备及其在碱性溶液中的电催化机理[J].物理化学学报,2013,29(7):1479-1486.
作者姓名:曹寅亮  李志林  王峰  刘景军  吉静  王建军  张良虎  覃事永
作者单位:1.State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China;2.Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China;3.Blue Star (Beijing) Chemical Machinery Co., Ltd., Beijing 100176, P. R. China
基金项目:The project was supported by the National Natural Science Foundation of China (51125007).国家自然科学基金
摘    要:采用恒电流电沉积法在铜箔基底上获得镍锡合金镀层电极. 电子能谱(EDS)、X射线衍射(XRD)以及高分辨透射电镜(HRTEM)分析表明, 随着锡含量的增加, 镀层由镍晶胚与非晶镍锡构成的非晶态结构转变为Ni3Sn4与Ni3Sn2的混晶结构. 扫描电镜(SEM)分析发现, 非晶结构镍锡合金电极表面粒子分布均匀且粒径细小, Ni3Sn4与Ni3Sn2混晶结构的镍锡合金电极表面粗糙且断面呈分层自组装结构. 在25℃, 1 mol·L-1 NaOH溶液中的稳态极化曲线表明非晶结构的镍锡合金电极具有良好的催化活性, 其析氢过电位仅为85 mV. 交流阻抗测试表明, 非晶以及混晶结构的镍锡合金在析氢电催化反应过程中由电化学吸附(Volmer)以及电化学脱附(Heyrovsky) 两个电荷转移过程控制, 且非晶结构电极相比于Ni3Sn4与Ni3Sn2混晶结构电极的高活性源于其活性氢具有更快的电化学吸附以及脱附速度.

关 键 词:镍锡合金  电沉积  非晶态  析氢反应机理  交流阻抗  
收稿时间:2013-03-07
修稿时间:2013-05-08

Electrochemical Preparation of Ni-Sn Active Cathode and Its Electrocatalytic Hydrogen Evolution Reaction Mechanisms in Alkaline Solution
CAO Yin-Liang,LI Zhi-Lin,WANG Feng, LIU Jing-Jun,JI Jing,WANG Jian-Jun,ZHANG Liang-Hu,QIN Shi-Yong.Electrochemical Preparation of Ni-Sn Active Cathode and Its Electrocatalytic Hydrogen Evolution Reaction Mechanisms in Alkaline Solution[J].Acta Physico-Chimica Sinica,2013,29(7):1479-1486.
Authors:CAO Yin-Liang  LI Zhi-Lin  WANG Feng  LIU Jing-Jun  JI Jing  WANG Jian-Jun  ZHANG Liang-Hu  QIN Shi-Yong
Institution:1.State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China;2.Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China;3.Blue Star (Beijing) Chemical Machinery Co., Ltd., Beijing 100176, P. R. China
Abstract:A simple galvanostatic electrodeposition method was used to synthesize an active Ni-Sn electrode on a Cu foil substrate. Characterization by high-resolution transmission electron microscopy (HRTEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) revealed that the crystal structures of the deposited films transformed from amorphous structures composed of Ni crystal embryos and amorphous Ni-Sn to Ni3Sn4/ Ni3Sn2 mixed crystals with increasing Sn content. Scanning electron microscope (SEM) images indicated that the amorphous Ni-Sn electrode possessed a smooth surface with uniform distribution of small particles, whereas the Ni3Sn4/Ni3Sn2 mixed crystalline electrode exhibited a rough surface composed of lamellar structures. The polarization curves measured in 1 mol·L-1 NaOH solution at 25℃ indicated that the amorphous Ni-Sn electrode showed a smaller overpotential (85 mV) and better electrocatalytic performance for hydrogen evolution than the mixed crystalline electrode. Electrochemical impedance spectroscopy (EIS) results showed that the hydrogen evolution reaction occurs on the Ni-Sn alloy electrode under a mixture of Volmer and Heyrovsky control. The higher activity of the amorphous Ni-Sn electrode was attributed to the faster charge transfer and electrochemical adsorption and desorption rates of hydrogen atoms compared with those on the mixed crystalline electrode.
Keywords:Nickel-tin alloy  Electrodepodition  Amorphous  Hydrogen evolution reaction mechanism  Alternating current impedance
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号