首页 | 本学科首页   官方微博 | 高级检索  
     检索      


PDMS-based microfluidic device with multi-height structures fabricated by single-step photolithography using printed circuit board as masters
Authors:Li Cheuk-Wing  Cheung Chung Nam  Yang Jun  Tzang Chi Hung  Yang Mengsu
Institution:Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
Abstract:We have developed a method for fabricating microfluidic devices with multi-height structures using single step photolithography. The whole fabrication process is executed by conventional printed circuit board (PCB) technology without the need of having access to clean room facilities. Specifically designed "windows" and "rims" architectures were printed on films that were used as photomasks. Different levels of protruding features on the PCB master were produced by exposing a photomask followed by chemical wet etching. Poly(dimethylsiloxane) (PDMS) was then moulded against the positive relief master to generate microfluidic structures. In this report, we described the fabrication of a microfluidic device featured with a multi-height "sandbag" structure for particle entrapment and peripheral microchannels. Controlled immobilization of biological cells and immunocytochemcial staining assays were performed to demonstrate the applicability of the microfluidic device for cellular analysis. The integrity of the microdevice remained stable under applied pressure, indicating the robustness of the elastic PDMS structures for analytical operation. The simple microfabrication process requires only low-cost materials and minimal specialized equipment and can reproducibly produce mask lines of about 20 microm in width, which is sufficient for most microfluidic applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号