首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An experimental study of a turbulent wing-body junction and wake flow
Authors:J L Fleming  R L Simpson  J E Cowling  W J Devenport
Institution:(1) Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, 24061 Blacksburg, Virginia, USA
Abstract:Extensive measurements were conducted in an incompressible turbulent flow around the wing-body junction formed by a 3∶2 semi-elliptic nose/NACA 0020 tail section and a flat plate. Mean and fluctuating velocity measurements were performed adjacent to the wing and up to 11.56 chord lengths downstream. The appendage far wake region was subjected to an adverse pressure gradient. The authors' results show that the characteristic horseshoe vortex flow structure is elliptically shaped, with ? (W)/?Y forming the primary component of the streamwise vorticity. The streamwise development of the flow distortions and vorticity distributions is highly dependent on the geometry-induced pressure gradients and resulting flow skewing directions. The primary goal of this research was to determine the effects of the approach boundary layer characteristics on the junction flow. To accomplish this goal, the authors' results were compared to several other junction flow data sets obtained using the same body shape. The trailing vortex leg flow structure was found to scale on T. A parameter known as the momentum deficit factor (MDF = (Re T)2 (θ/T)) was found to correlate the observed trends in mean flow distortion magnitudes and vorticity distribution. Changes in δ/T were seen to affect the distribution of u′, with lower ratios producing well defined local turbulence maxima. Increased thinning of the boundary layer near the appendage was also observed for small values of δ/T.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号