首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reactive capture of gold nanoparticles by strongly physisorbed monolayers on graphite
Authors:Xiaoliang Wei  Wenjun Tong  Vlastimil Fidler  Matthew B Zimmt
Institution:a Department of Chemistry, Brown University, Providence, RI 02912, United States
b Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University, Prague, Czech Republic
Abstract:Anthracene Diels Alder adducts (DAa) bearing two long side chains (H-(CH2)22O(CH2)6OCH2-) at the 1- and 5-positions form self-assembled monolayers (SAMs) at the phenyloctane - highly oriented pyrolytic graphite (HOPG) interface. The long DAa side chains promote strong physisorption of the monolayer to HOPG and maintain the monolayer morphology upon rinsing or incubation in ethanol and air-drying of the substrate. Incorporating a carboxylic acid group on the DAa core enables capture of 1-4 nm diameter gold nanoparticles (AuNPs) provided (i) the monolayer containing DAa-carboxylic acids is treated with Cu2+ ions and (ii) the organic coating on the AuNP contains carboxylic acids (11-mercaptoundecanoic acid, MUA-AuNP). AuNP capture by the monolayer proceeds with formation of Cu2+ - carboxylate coordination complexes. The captured AuNP appear as mono- and multi-layered clusters at high coverage on HOPG. The surface density of the captured AuNPs can be adjusted from AuNP multi-layers to isolated AuNPs by varying incubation times, MUA-AuNP concentration, the number density of carboxylic acids in the monolayer, the number of MUA per AuNP, and post-incubation treatments.
Keywords:Scanning tunneling microscopy  Reactive monolayers  Gold nanoparticles  Self assembly  Coordination
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号