首页 | 本学科首页   官方微博 | 高级检索  
     


Estimating Functions for Nonlinear Time Series Models
Authors:S. Ajay Chandra  Masanobu Taniguchi
Affiliation:(1) Department of Mathematical Science, Graduate School of Engineering Science, Osaka University, Machikaneyama-cho 1-3, Toyonaka, Osaka, 560-8531, Japan, e-mail
Abstract:
This paper discusses the problem of estimation for two classes of nonlinear models, namely random coefficient autoregressive (RCA) and autoregressive conditional heteroskedasticity (ARCH) models. For the RCA model, first assuming that the nuisance parameters are known we construct an estimator for parameters of interest based on Godambe's asymptotically optimal estimating function. Then, using the conditional least squares (CLS) estimator given by Tjøstheim (1986, Stochastic Process. Appl., 21, 251–273) and classical moment estimators for the nuisance parameters, we propose an estimated version of this estimator. These results are extended to the case of vector parameter. Next, we turn to discuss the problem of estimating the ARCH model with unknown parameter vector. We construct an estimator for parameters of interest based on Godambe's optimal estimator allowing that a part of the estimator depends on unknown parameters. Then, substituting the CLS estimators for the unknown parameters, the estimated version is proposed. Comparisons between the CLS and estimated optimal estimator of the RCA model and between the CLS and estimated version of the ARCH model are given via simulation studies.
Keywords:Nonlinear time series models  random coefficient autoregressive models  autoregressive conditional heteroskedasticity models  conditional least squares estimator  estimating function  classical moment estimator  asymptotic optimality
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号