首页 | 本学科首页   官方微博 | 高级检索  
     


Phenalenyl‐Based Organozinc Catalysts for Intramolecular Hydroamination Reactions: A Combined Catalytic,Kinetic, and Mechanistic Investigation of the Catalytic Cycle
Authors:Arup Mukherjee  Tamal K. Sen  Dr. Pradip Kr. Ghorai  Dr. Prinson P. Samuel  Dr. Carola Schulzke  Dr. Swadhin K. Mandal
Affiliation:1. Department of Chemical Sciences, Indian Institute of Science Education and Research‐Kolkata, Mohanpur‐741252 (India), Fax: (+91)?33‐48092033;2. Institut für Anorganische Chemie, Georg‐August Universit?t G?ttingen, Tammannstrasse 4, 37077 (Germany);3. School of Chemistry, Trinity College Dublin, Dublin 2 (Ireland)
Abstract:Herein, we report the synthesis and characterization of two organozinc complexes that contain symmetrical phenalenyl (PLY)‐based N,N‐ligands. The reactions of phenalenyl‐based ligands with ZnMe2 led to the formation of organozinc complexes [N(Me),N(Me)‐PLY]ZnMe ( 1 ) and [N(iPr),N(iPr)‐PLY]ZnMe ( 2 ) under the evolution of methane. Both complexes ( 1 and 2 ) were characterized by NMR spectroscopy and elemental analysis. The solid‐state structures of complexes 1 and 2 were determined by single‐crystal X‐ray crystallography. Complexes 1 and 2 were used as catalysts for the intramolecular hydroamination of unactivated primary and secondary aminoalkenes. A combined approach of NMR spectroscopy and DFT calculations was utilized to obtain better insight into the mechanistic features of the zinc‐catalyzed hydroamination reactions. The progress of the catalysis for primary and secondary aminoalkene substrates with catalyst 2 was investigated by detailed kinetic studies, including kinetic isotope effect measurements. These results suggested pseudo‐first‐order kinetics for both primary and secondary aminoalkene activation processes. Eyring and Arrhenius analyses for the cyclization of a model secondary aminoalkene substrate afforded ΔH=11.3 kcal mol?1, ΔS=?35.75 cal K?1 mol?1, and Ea=11.68 kcal mol?1. Complex 2 exhibited much‐higher catalytic activity than complex 1 under identical reaction conditions. The in situ NMR experiments supported the formation of a catalytically active zinc cation and the DFT calculations showed that more active catalyst 2 generated a more stable cation. The stability of the catalytically active zinc cation was further supported by an in situ recycling procedure, thereby confirming the retention of catalytic activity of compound 2 for successive catalytic cycles. The DFT calculations showed that the preferred pathway for the zinc‐catalyzed hydroamination reactions is alkene activation rather than the alternative amine‐activation pathway. A detailed investigation with DFT methods emphasized that the remarkably higher catalytic efficiency of catalyst 2 originated from its superior stability and the facile formation of its cation compared to that derived from catalyst 1 .
Keywords:density functional calculations  homogeneous catalysis  hydroamination  phenalenyl ligands  zinc
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号