首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Transient streaming potential in a finite length microchannel
Authors:Mansouri Ali  Scheuerman Carl  Bhattacharjee Subir  Kwok Daniel Y  Kostiuk Larry W
Institution:Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2G8, Canada.
Abstract:Pressure-driven flow of an electrolyte solution in a microchannel with charged solid surfaces induces a streaming potential across the microchannel. Such a flow also causes rejection of ions by the microchannel, leading to different concentrations in the feed and permeate reservoirs connecting the capillary, which forms the basis of membrane based separation of electrolytes. Modeling approaches traditionally employed to assess the streaming potential development and ion rejection by capillaries often present a confusing picture of the governing electrochemical transport processes. In this paper, a transient numerical simulation of electrochemical transport process leading to the development of a streaming potential across a finite length circular cylindrical microchannel connecting two infinite reservoirs is presented. The solution based on finite element analysis shows the transient development of ionic concentrations, electric fields, and the streaming potential over the length of the microchannel. The transient analysis presented here resolves several contradictions between the two types of modeling approaches employed in assessing streaming potential development and ion rejection. The simulation results show that the streaming potential across the channel is predominantly set up at the timescale of the developing convective transport, while the equilibrium ion concentrations are developed over a considerably longer duration.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号