首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Predictions of the modified Biot-Attenborough model for the dependence of phase velocity on porosity in cancellous bone
Authors:Lee Kang Il  Humphrey Victor F  Leighton Timothy G  Yoon Suk Wang
Institution:

aDepartment of Physics, Kangwon National University, Chuncheon 200-701, Republic of Korea

bInstitute of Sound and Vibration Research, University of Southampton, Southampton SO17 1BJ, United Kingdom

cDepartment of Physics and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea

Abstract:The modified Biot–Attenborough (MBA) model for acoustic wave propagation in porous media has been found useful to predict wave properties in cancellous bone. The present study is aimed at applying the MBA model to predict the dependence of phase velocity on porosity in cancellous bone. The MBA model predicts a phase velocity that decreases nonlinearly with porosity. The optimum values for input parameters of the MBA model, such as compressional speed cm of solid bone and phase velocity parameter s2, were determined by comparing the predictions with previously published measurements in human calcaneus and bovine cancellous bone. The value of the phase velocity parameter s2 = 1.23 was obtained by curve fitting to the experimental data for 53 human calcaneus samples only, assuming a compressional speed cm = 2500 m/s of solid bone. The root-mean-square error (RMSE) of the curve fit was 15.3 m/s. The optimized value of s2 for all 75 cancellous bone samples including 22 bovine samples was 1.42 with a value of 55 m/s for the RMSE of the curve fit. The latter fit was obtained by using of a value of cm = 3200 m/s. Although the MBA model relies on the empirical parameters determined from experimental data, it is expected that the model can be usefully employed as a practical tool in the field of clinical ultrasonic bone assessment.
Keywords:Osteoporosis  Cancellous bone  Phase velocity  Porosity  Biot’s theory  Modified Biot–Attenborough model
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号