首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantum Complexity of Integration
Abstract:It is known that quantum computers yield a speed-up for certain discrete problems. Here we want to know whether quantum computers are useful for continuous problems. We study the computation of the integral of functions from the classical Hölder classes Fkαd on 0, 1]d and define γ by γ=(k+α)/d. The known optimal orders for the complexity of deterministic and (general) randomized methods are comp(Fkαdε)≍ε−1/γ and comprandom(Fkαdε)≍ε−2/(1+2γ). For a quantum computer we prove compquantquery(Fkαdε)≍ε−1/(1+γ) and compquant(Fkαdε)⩽−1/(1+γ)(log ε−1)1/(1+γ). For restricted Monte Carlo (only coin tossing instead of general random numbers) we prove compcoin(Fkαdε)⩽−2/(1+2γ)(log ε−1)1/(1+2γ). To summarize the results one can say that    there is an exponential speed-up of quantum algorithms over deterministic (classical) algorithms, if γ is small;    there is a (roughly) quadratic speed-up of quantum algorithms over randomized classical methods, if γ is small.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号