首页 | 本学科首页   官方微博 | 高级检索  
     


Non-monotone trust-region algorithms for nonlinear optimization subject to convex constraints
Authors:Philippe L. Toint
Affiliation:(1) Department of Mathematics, Facultés Universitaires ND de la Paix, B-5000 Namur, Belgium
Abstract:
This paper presents two new trust-region methods for solving nonlinear optimization problems over convex feasible domains. These methods are distinguished by the fact that they do not enforce strict monotonicity of the objective function values at successive iterates. The algorithms are proved to be convergent to critical points of the problem from any starting point. Extensive numerical experiments show that this approach is competitive with the LANCELOT package.
Keywords:Non-monotone algorithms  Trust regions  Convex constraints
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号