首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A two-phase tabu search based evolutionary algorithm for the maximum diversity problem
Abstract:In this paper, we study the maximum diversity problem (MDP) which is equivalent to the quadratic unconstrained binary optimization (QUBO) problem with cardinality constraint. The MDP aims to select a subset of elements with given cardinality such that the sum of pairwise distances between any two elements in the selected subset is maximized. For solving this computationally challenging problem, we propose a two-phase tabu search based evolutionary algorithm (TPTS/EA), which integrates several distinguishing features to ensure the diversity and the quality of the evolution, such as a two-phase tabu search algorithm which consists of a dynamic candidate list (DCL) strategy-based traditional tabu search in the first phase and a solution-based tabu search procedure to refine the search in the second phase, and two path-relinking based recombination operators to generate new offspring solutions. Tested on three sets of totally 140 public instances in the literature, the study demonstrates the efficacy of the proposed TPTS/EA algorithm in terms of both solution quality and computational efficiency. Specifically, our proposed TPTS/EA algorithm is able to improve the previous best known results for 2 instances, while matching the previous best-known solutions for 130 instances. We also provide experimental evidences to highlight the beneficial effect of several important components in our TPTS/EA algorithm.
Keywords:Maximum diversity problem  Hybrid evolutionary algorithm  Tabu search  Dynamic candidate list  Path relinking  Recombination operator
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号