首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synergistic effect of Cr2O3 and Co3O4 nanocomposite electrode for high performance supercapacitor applications
Institution:1. Department of Physics, Alagappa University, Karaikudi, 630003, India;2. Department of Biotechnology, Alagappa University, Karaikudi, 630003, India;3. Department of Physics, Kalasalingam Academy of Research and Education, Krishnan Koil, 626126, India
Abstract:The fabrication of high performance supercapacitor electrodes has been greatly investigated for future high power storage applications. In this present work, chromium oxide-cobalt oxide based nanocomposite (Cr2O3–Co3O4 NC) was synthesized using the hydrothermal approach. Moreover, the cyclic voltammetry (CV) study reveals the Cr2O3–Co3O4 NC delivers a high specific capacitance of 619.4 F/g at 10 mV/s. The electrochemical impedance spectra (EIS) of Cr2O3–Co3O4 NC possess the solution resistance (Rs) and charge transfer resistance (Rct) of 0.68 Ω and 0.03 Ω respectively. The Galvanostatic charge-discharge (GCD) analysis demonstrated the prolonged charge-discharge time and good rate capability of the Cr2O3–Co3O4 NC. The cyclic stability of Cr2O3–Co3O4 NC delivers superior capacitive retention of 83% even after 2000 cycles. The asymmetric supercapacitor (ASC) device based on Cr2O3–Co3O4//AC yielded an energy density of 4.3 Wh/kg at the corresponding power density of 200 W/kg. Furthermore, the ASC delivers superior cyclic stability of 74.8% even after 1000 consecutive charge-discharge cycles.
Keywords:Supercapacitor  Energy density  Specific capacitance  Cyclic stability  Diffusion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号