首页 | 本学科首页   官方微博 | 高级检索  
     


Meltingbehaviour and evolved gas analysis of xylose
Authors:M. Lappalainen  I. Pitkänen  H. Heikkilä  J. Nurmi
Affiliation:1. Department of Chemistry, University of Jyv?skyl?, Jyv?skyl?, Finland, 35, 40014
2. Danisco Sugar and Sweeteners Development Center, Kantvik, Finland, 02460
Abstract:
Two enantiomeric forms of xylose were identified as α-D-xylopyranose and α-L-xylopyranose by powder diffraction. Their melting behaviour was studied with conventional DSC and StepScan DSC method, the decomposition was studied with TG and evolved gases were analyzed with combined TG-FTIR technique. The measurements were performed at different heating rates. The decomposition of xylose samples took place in four steps and the main evolved gases were H2O, CO2 and furans. The initial temperature of TG measurements and the onset and peak temperatures of DSC measurements were moved to higher temperatures as heating rates were increased. The decomposition of L-xylose started at slightly higher temperatures than that of D-xylose and L-xylose melted at higher temperatures than D-xylose. The differences were more obvious at low heating rates. There were also differences in the melting temperatures among different samples of the same sugar. The StepScan measurements showed that the kinetic part of melting was considerable. The melting of xylose was anomalous because, besides the melting, also partial thermal decomposition and mutarotation occurred. The melting points are affected by both the method of determination and the origin and quality of samples. Melting point analysis with a standardized method appears to be a good measure of the quality of crystalline xylose. However, the melting point alone cannot be used for the identification of xylose samples in all cases.
Keywords:decomposition  DSC  EGA  melting  StepScan DSC  TG  thermal analysis  xylose
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号