首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the morphology and stability of Au nanoparticles on TiO2(110) prepared from micelle-stabilized precursors
Authors:Kielbassa Stefan  Häbich Annette  Schnaidt Johannes  Bansmann Joachim  Weigl Frank  Boyen Hans-Gerd  Ziemann Paul  Behm R Jürgen
Institution:Department of Surface Chemistry and Catalysis, University of Ulm, D-89069 Ulm, Germany.
Abstract:The morphology and stability of well-ordered, nanostructured Au/TiO2(110) surfaces, prepared by deposition of Au loaded micelles on TiO2(110) substrates and subsequent oxidative removal of the polymer shell in an oxygen plasma, was investigated by noncontact AFM, SEM and XPS. The resulting arrays of Au nanoparticles (particle sizes 1-5 nm) form a nearly hexagonal pattern with well-defined interparticle distances and a narrow particle size distribution. Particle size and particle separation can be controlled independently by varying the Au loading and the block-copolymers in the micelle shell. The oxygen plasma treatment does not affect the size and distance of the Au nanoparticles; the latter are fully metallic after subsequent UHV annealing (400 degrees C). The particles are stable under typical CO oxidation reaction conditions, up to at least 200 degrees C, making these surfaces ideally suited as defined model systems for catalytic studies. Significant changes in the height distributions of the Au nanoparticles are found upon 400 degrees C annealing in O2. For adlayers with small interparticle distances, this leads to a bimodal particle size distribution, which together with the preservation of the lateral order points to Ostwald ripening.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号