首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthetic and computational studies of the palladium(iv) system Pd(alkyl)(aryl)(alkynyl)(bidentate)(triflate) exhibiting selectivity in C-C reductive elimination
Authors:Manab Sharma  Alireza Ariafard  Allan J Canty  Brian F Yates  Michael G Gardiner  Roderick C Jones
Institution:School of Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia. allan.canty@utas.edu.au brian.yates@utas.edu.au.
Abstract:Synthetic routes to methyl(aryl)alkynylpalladium(iv) motifs are presented, together with studies of selectivity in carbon-carbon coupling by reductive elimination from Pd(IV) centres. The iodonium reagents IPh(Ctriple bond, length as m-dash]CR)(OTf) (R = SiMe(3), Bu(t), OTf = O(3)SCF(3)) oxidise Pd(II)Me(p-Tol)(L(2)) (1-3) L(2) = 1,2-bis(dimethylphosphino)ethane (dmpe) (1), 2,2'-bipyridine (bpy) (2), 1,10-phenanthroline (phen) (3)] in acetone-d(6) or toluene-d(9) at -80 °C to form complexes Pd(IV)(OTf)Me(p-Tol)(Ctriple bond, length as m-dash]CR)(L(2)) R = SiMe(3), L(2) = dmpe (4), bpy (5), phen (6); R = Bu(t), L(2) = dmpe (7), bpy (8), phen (9)] which reductively eliminate predominantly (>90%) p-Tol-Ctriple bond, length as m-dash]CR above ~-50 °C. NMR spectra show that isomeric mixtures are present for the Pd(IV) complexes: three for dmpe complexes (4, 7), and two for bpy and phen complexes (5, 6, 8, 9), with reversible reduction in the number of isomers to two occurring between -80 °C and -60 °C observed for the dmpe complex 4 in toluene-d(8). Kinetic data for reductive elimination from Pd(IV)(OTf)Me(p-Tol)(Ctriple bond, length as m-dash]CSiMe(3))(dmpe) (4) yield similar activation parameters in acetone-d(6) (66 ± 2 kJ mol(-1), ΔH(?) 64 ± 2 kJ mol(-1), ΔS(?)-67 ± 2 J K(-1) mol(-1)) and toluene-d(8) (E(a) 68 ± 3 kJ mol(-1), ΔH(?) 66 ± 3 kJ mol(-1), ΔS(?)-74 ± 3 J K(-1) mol(-1)). The reaction rate in acetone-d(6) is unaffected by addition of sodium triflate, indicative of reductive elimination without prior dissociation of triflate. DFT computational studies at the B97-D level show that the energy difference between the three isomers of 4 is small (12.6 kJ mol(-1)), and is similar to the energy difference encompassing the six potential transition state structures from these isomers leading to three feasible C-C coupling products (13.0 kJ mol(-1)). The calculations are supportive of reductive elimination occurring directly from two of the three NMR observed isomers of 4, involving lower activation energies to form p-TolCtriple bond, length as m-dash]CSiMe(3) and earlier transition states than for other products, and involving coupling of carbon atoms with higher s character of σ-bonds (sp(2) for p-Tol, sp for Ctriple bond, length as m-dash]C-SiMe(3)) to form the product with the strongest C-C bond energy of the potential coupling products. Reductive elimination occurs predominantly from the isomer with Me(3)SiCtriple bond, length as m-dash]C trans to OTf. Crystal structure analyses are presented for Pd(II)Me(p-Tol)(dmpe) (1), Pd(II)Me(p-Tol)(bpy) (2), and the acetonyl complex Pd(II)Me(CH(2)COMe)(bpy) (11).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号