首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Probing the molecular-scale lipid bilayer response to shear flow using nonequilibrium molecular dynamics
Authors:Blood Philip D  Ayton Gary S  Voth Gregory A
Institution:Center for Biophysical Modeling and Simulation and Department of Bioengineering, University of Utah, 315 S. 1400 E. Rm 2020, Salt Lake City, Utah 84112-0850, USA.
Abstract:A nonequilibrium molecular dynamics simulation of the response of dimyristoylphosphatidylcholine (DMPC) bilayers to a solvent shear flow is presented. Application of shear flow to planar, stationary DMPC bilayers results in a redistribution of the membrane density profile along the bilayer normal due to the alignment of the lipids in the direction of flow and an increase in average lipid chain length. An increase in the intermolecular and intramolecular order of the lipids in response to the shear flow is also observed. This study provides groundwork for understanding the mechanism of the full response of lipid bilayers to externally imposed solvent shear flows, beginning with the response in the absence of collective lipid motions such as undulations and bilayer flow.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号