首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biocalorimetry as a process analytical technology process analyser; robust in-line monitoring and control of aerobic fed-batch cultures of crabtree-negative yeast cells
Authors:Senthilkumar Sivaprakasam  Moira Monika Schuler  Adel Hama  Katie-Marie Hughes  Ian W Marison
Institution:(1) Laboratory of Integrated Bioprocessing (LiB), School of Biotechnology, Dublin City University, Dublin 9, Ireland;
Abstract:Control of bioprocesses requires reliable and robust on- or in-line monitoring tools providing real-time information on process dynamics. Heat generation related to metabolic activity of living systems is currently gaining importance in bioprocess industry due to its non-invasive and essentially instantaneous characteristics. This study deals with monitoring and control of pure aerobic fed-batch cultures of three Crabtree-negative yeast strains, Kluyveromyces marxianus, Candida utilis and Pichia pastoris, based on in-line measured, metabolic heat flow signals. A high resolution biocalorimeter (BioRC1) was developed from a standard bench-scale heat flow calorimeter (RC1). The BioRC1 was equipped with in-line (dielectric spectroscopy, pH probe and dissolved oxygen probe) and at-line (exit gas analyser) sensors to characterise the growth behaviour of the yeast cells. Both metabolic heat flow and biomass profiles exhibited similar behaviour proving the significance of employing heat flow signal as a key-parameter for the system under investigation. A simple estimator for biomass concentration and specific growth rate was formulated based on heat flow values. In order to evaluate the potential of calorimetry as a reliable and powerful process monitoring tool, the robustness, reliability as well as the broad applicability of the developed estimators was assessed through comparison with off-line measurement techniques and showed promising results for general applicability with a wide range of bioprocesses.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号