首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Breaking K+ Concentration Limit on Cu Nanoneedles for Acidic Electrocatalytic CO2 Reduction to Multi-Carbon Products
Authors:Xin Zi  Yajiao Zhou  Li Zhu  Qin Chen  Yao Tan  Xiqing Wang  Dr Mahmoud Sayed  Dr Evangelina Pensa  Dr Ramadan A Geioushy  Dr Kang Liu  Dr Junwei Fu  Prof Emiliano Cortés  Prof Min Liu
Institution:1. Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan P. R. China

These authors contributed equally to this work.;2. Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539 München, Germany;3. Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan P. R. China;4. Chemistry Department, Faculty of Science, Fayoum University, Fayoum, 63514 Egypt;5. Central Metallurgical Research and Development Institute, CMRDI P.O. Box: 87, Helwan, 11421, Cairo Egypt

Abstract:Electrocatalytic CO2 reduction reaction (CO2RR) to multi-carbon products (C2+) in acidic electrolyte is one of the most advanced routes for tackling our current climate and energy crisis. However, the competing hydrogen evolution reaction (HER) and the poor selectivity towards the valuable C2+ products are the major obstacles for the upscaling of these technologies. High local potassium ions (K+) concentration at the cathode's surface can inhibit proton-diffusion and accelerate the desirable carbon-carbon (C−C) coupling process. However, the solubility limit of potassium salts in bulk solution constrains the maximum achievable K+ concentration at the reaction sites and thus the overall acidic CO2RR performance of most electrocatalysts. In this work, we demonstrate that Cu nanoneedles induce ultrahigh local K+ concentrations (4.22 M) – thus breaking the K+ solubility limit (3.5 M) – which enables a highly efficient CO2RR in 3 M KCl at pH=1. As a result, a Faradaic efficiency of 90.69±2.15 % for C2+ (FEC2+) can be achieved at 1400 mA.cm−2, simultaneous with a single pass carbon efficiency (SPCE) of 25.49±0.82 % at a CO2 flow rate of 7 sccm.
Keywords:C−C Coupling  CO2 Reduction  Cu Nanoneedles  Field Effect  K+ Concentration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号