首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analysis of an organized turbulent structure using a pattern recognition technique in a drag-reducing surfactant solution flow
Institution:1. China Research Institute of Daily Chemical Industry, Wenyuan Str. No. 34, Taiyuan 030001, PR China;2. Beijing Green Umbrella Chemistry Co., Ltd., Beijing 100094, China
Abstract:This work presents the investigation for an organized turbulent structure in a drag-reducing flow of dilute surfactant solution by utilizing a particle image velocimetry system to perform the pattern recognition technique on a trajectory in four quadrants of streamwise and wall-normal velocity fluctuations. The pattern recognition is added to a new algorithm in order to directly capture the spatial rotation motion. The Reynolds number based on the channel height and bulk mean velocity was set to 1.5 × 104. Surfactant solution with a weight concentration of 150 ppm was employed and the drag reduction rate was 65%. In the drag-reducing flow, we observe increased frequencies of occurrence of the flow events that correspond to a meandering motion in the wall-normal direction of the high-and low-speed regions. Three findings from investigation of the ensemble-averaged Reynolds shear stress and vortex structure are as follows: (i) the Reynolds shear stress in the large fluctuation range occurs in the narrow region; (ii) Size, strength, arrangement and inclination in the spatial vortex structure in the drag-reducing flow differ from those of the water; and (iii) all trajectory contributions for the wall friction coefficient decrease. Finally, we interpreted that the viscoelasticity characterizing the viscoelastic stress and relaxation time in rheological properties of the flow changes specific elementary vortex for the drag-reducing flow, and the trajectories of each flow pattern change drastically.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号