首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Double-diffusive convection in a cubical lid-driven cavity with opposing temperature and concentration gradients
Authors:A K Nayak  S Bhattacharyya
Institution:1. Department of Mathematics, Indian Institute of Technology, Kharagpur, 721302, India
Abstract:A numerical study of three-dimensional incompressible viscous flow inside a cubical lid-driven cavity is presented. The flow is governed by two mechanisms: (1) the sliding of the upper surface of the cavity at a constant velocity and (2) the creation of an external gradient for temperature and solutal fields. Extensive numerical results of the three-dimensional flow field governed by the Navier-Stokes equations are obtained over a wide range of physical parameters, namely Reynolds number, Grashof number and the ratio of buoyancy forces. The preceding numerical results obtained have a good agreement with the available numerical results and the experimental observations. The deviation of the flow characteristics from its two-dimensional form is emphasized. The changes in main characteristics of the flow due to variation of Reynolds number are elaborated. The effective difference between the two-dimensional and three-dimensional results for average Nusselt number and Sherwood number at high Reynolds numbers along the heated wall is analyzed. It has been observed that the substantial transverse velocity that occurs at a higher range of Reynolds number disturbs the two-dimensional nature of the flow.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号