首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bistatic scattering and depolarization by randomly rough surfaces: application to the natural rough surfaces in X-band
Abstract:Abstract

The scattering of waves by random rough surfaces has important applications in the remote sensing of oceans and land. The problem of developing a model for rough surfaces is very difficult since, at best, the scattering coefficient σ0 is dependent upon (at least) the radar frequency, geometrical and physical parameters, incident and observation angles, and polarization. The problem of electromagnetic scattering from a randomly rough surface is analysed using the Kirchhoff approximation (stationary phase, scalar approximation), the small-perturbation model and the two-scale models. A first major new consideration in this paper is the polarimetric signature calculations as a function of the transmitter location and receiver location for a bistatic radio-link. We calculate the like- and cross-polarized received power directly using the scattering coefficients, without calculating the Mueller matrix. Next, a study of the regions of validity of the Kirchhoff and small-perturbation rough surface scattering models (in the bistatic case) is presented. Comparisons between the numerical calculations and the models are made for various surface rms heights and correlation lengths both normalized to the incident wavenumber (denoted by σ and L, respectively). By using these two parameters to form a two-dimensional space, the approximate regions of validity are then established. The second major new consideration is the development of a theoretical two-scale model describing bistatic reflectivity as well as the numerical results computed for the bistatic radar cross section from rough surfaces especially from the sea and snow-covered surfaces. The results are used to show the Brewster angle effect on near-grazing angle scattering.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号