Abstract: | The solubility properties of poly(vinyl alcohol) (PVA) vary with the method of preparation of the poly(vinyl acetate) (PVAc) from which it is derived. PVAc was prepared with free-radical catalysts over a range of temperatures from ?78 to 90°C. with solvents of varying chain-transfer ability. The corresponding PVA samples varied in their resistance to dissolution in water. Their high-resolution proton nuclear magnetic resonance spectra showed on differences in tacticity. Data on 1,2-diol content showed only minor differences. Hence, the increase in resistance of PVA to dissolution in water arising from changes in chain-transfer activity of the solvent used in vinyl acetate polymerization is largely attributable to a decrease in molecular weight, and the increase in resistance of PVA to dissolution in water arising from a decrease in the temperature of the vinyl acetate polymerization is largely attributable to a decrease in both long and short branches. Evidently, with polar polymers having small side groups, tacticity is not the only factor influencing property variation; that is, variations in stereoregularity influence more the crystallinity of the sample as measured by density or x-ray methods than the ultimate crystallizability under conditions of mechanical and thermal treatment. In this regard polar polymers having small side groups differ from nonpolar polymers. |