首页 | 本学科首页   官方微博 | 高级检索  
     


Radiation synthesis and characterization of poly(N,N-dimethylaminoethyl methacrylate-co-N-vinyl 2-pyrrolidone) hydrogels
Authors:M. ?en  M. Sar?
Affiliation:Department of Chemistry, Hacettepe University, Beytepe, Ankara, 06532, Turkey
Abstract:
In this study, radiation synthesis and characterization of swelling behavior and network structure of poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA), and poly(N,N-dimethylaminoethyl methacrylate-co-N-vinyl 2-pyrrolidone) (P(DMAEMA-co-VP)), hydrogels were investigated. PDMAEMA and P(DMAEMA-co-VP) hydrogels in the rod forms were prepared by irradiating the ternary mixtures of DMAEMA/VP/cross-linking agent, ethyleneglycol dimethacrylate (EGDMA), by gamma rays at ambient temperature. In composition ranges where the three components were completely miscible, water was also added to the ternary mixture to provide the formation of homogeneous polymerization and gelation. The influence of irradiation dose, comonomer, VP, and cross-linking agent, EGDMA, content on the total percentage gelation and monomer conversion were investigated. The effect of pH and temperature on the swelling behavior of hydrogels have also been examined. Hydrogels showed typical pH response and temperature responses, such as low-pH and low temperature swelling and high-pH and high temperature deswelling. Polymer-solvent interaction parameter (χ) and enthalpy and entropy changes appearing in the χ parameter for the P(DMAEMA-co-VP)-water system were determined by using Flory-Rehner theory of swelling equilibrium. The negative values for ΔH and ΔS indicate that prepared pure PDMAEMA and P(DMAEMA-co-VP) hydrogels have lower critical solution temperature (LCST) and Flory-Rehner theory of swelling equilibrium provides a satisfactory agreement to the experimental swelling data of the hydrogels.
Keywords:N,N-Dimethylaminoethyl methacrylate   N-vinyl 2-pyrrolidone   Hydrogel   Radiation synthesis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号