首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Blowout limits of inclined nonpremixed turbulent jet flames
Institution:1. School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, Anhui 230009, China;2. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, China;3. Division of Mechanical and Space Engineering, Hokkaido University, Sapporo 060-8628, Japan;4. Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia;1. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China;2. Dalian National Laboratory for Clean Energy, Dalian 116023, China;1. School of Automotive and Traffic Engineering, Jiangsu University, China;2. State Key Laboratory of Fire Science, University of Science and Technology of China, China;3. School of Automotive and Transportation Engineering, Hefei University of Technology, China
Abstract:The blowout behavior of inclined nonpremixed turbulent jet flames is investigated by varying the jet inclined angle in the range of -90° to 90° The critical jet velocity at blow-out limit is quantified experimentally for various nozzle diameters, different fuels and inclined angles. Numerical simulations are performed to emphasize the flow field difference for the positive and negative inclined angles. Physical modeling is conducted to incorporate the effect of the inclined angle on blow-out behavior. Major findings include: (1) The negatively inclined jet flames show more intense yellow luminosity with larger sooting zones than the positively inclined jet flames; (2) The blowout limit decreases appreciably with the jet inclined angle for the negatively inclined flames, while for the positively inclined jet flames, this decrease is relatively small; (3) Physical analysis of the flow development of inclined jets is conducted, indicating the centerline velocity along the jet trajectory decreases faster for the flame with smaller inclined angle. And the decrease rate is relatively larger for the negatively inclined jet flames; (4) Based on the analysis of the flow development as well as the characteristic velocity with the inclined angle variation, a model based on the Damköhler number (Da) accounting for the effect of jet inclined angle is developed to characterize the blowout limits of inclined jet flames. The proposed model successfully correlates the experimental data. The present findings provide new data and a basic scaling law for the blowout limit of nonpremixed inclined turbulent jet flames, revealing the effect of the relative angle between the jet momentum and buoyancy.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号