首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Decomposition methods for a spatial model for long-term energy pricing problem
Authors:Philippe Mahey  Jonas Koko  Arnaud Lenoir
Institution:1.Université Clermont,Clermont-Ferrand,France;2.EDF Lab,Palaiseau,France
Abstract:We consider an energy production network with zones of production and transfer links. Each zone representing an energy market (a country, part of a country or a set of countries) has to satisfy the local demand using its hydro and thermal units and possibly importing and exporting using links connecting the zones. Assuming that we have the appropriate tools to solve a single zonal problem (approximate dynamic programming, dual dynamic programming, etc.), the proposed algorithm allows us to coordinate the productions of all zones. We propose two reformulations of the dynamic model which lead to different decomposition strategies. Both algorithms are adaptations of known monotone operator splitting methods, namely the alternating direction method of multipliers and the proximal decomposition algorithm which have been proved to be useful to solve convex separable optimization problems. Both algorithms present similar performance in theory but our numerical experimentation on real-size dynamic models have shown that proximal decomposition is better suited to the coordination of the zonal subproblems, becoming a natural choice to solve the dynamic optimization of the European electricity market.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号