Classification and quantification analysis of Radix scutellariae from different origins with near infrared diffuse reflection spectroscopy |
| |
Authors: | Wenlong LiLihong Xing Yu CaiHaibin Qu |
| |
Affiliation: | Pharmaceutical Informatics Institute, Zhejiang University, Hangzhou 310058, China |
| |
Abstract: | A rapid near infrared spectroscopy analysis method was developed for the geographical origin discrimination and content determination of Radix scutellariae, a kind of Traditional Chinese Medicine (TCM). 81 R. scutellariae samples from six different origins were analyzed with HPLC-UV as reference method. The NIR spectra were collected in integrating-sphere diffused reflection mode and processed with different spectra pretreated methods. Discriminant analysis (DA) and discriminant partial least squares (DPLS) were applied to classify the geographical origins of those samples, and the latter had a better predictive ability with 100% accuracy after two exceptional samples eliminated from the calibration set. For the quantitative calibration, the samples were divided into calibration set and validation set by Kennard-Stone algorithm. The models of baicalin, wogonoside, baicalein, wogonin were established with partial least squares (PLS) algorithm and the optimal principal component (PC) numbers were selected with Leave-One-Out (LOO) cross-validation. The established models were evaluated with the root mean square error of prediction (RMSEP) and corresponding correlation coefficients. The correlation coefficients of all the four calibration models are above 0.920, and the RMSEPs of baicalin, wogonoside, baicalein and wogonin are 0.752%, 0.094%, 0.418% and 0.139%, respectively. This research indicated that the NIR diffuse reflection spectroscopy could be used for the rapid analysis of R. scutellariae, which is beneficial to the quality control of this raw material in TCM pharmaceutical factory, and will also help to solve analogous problems. |
| |
Keywords: | NIR diffuse reflection spectroscopy Radix scutellariae Geographical origin discriminant Quantitative analysis Partial least squares |
本文献已被 ScienceDirect 等数据库收录! |
|