首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Final-state interactions and single-spin asymmetries in semi-inclusive deep inelastic scattering
Authors:Stanley J Brodsky  Dae Sung Hwang  Ivan Schmidt  
Institution:

a Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA

b Department of Physics, Sejong University, Seoul 143-747, South Korea

c Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile

Abstract:Recent measurements from the HERMES and SMC Collaborations show a remarkably large azimuthal single-spin asymmetries AUL and AUT of the proton in semi-inclusive pion leptoproduction γ*(q)p→πX. We show that final-state interactions from gluon exchange between the outgoing quark and the target spectator system lead to single-spin asymmetries in deep inelastic lepton–proton scattering at leading twist in perturbative QCD; i.e., the rescattering corrections are not power-law suppressed at large photon virtuality Q2 at fixed xbj. The existence of such single-spin asymmetries requires a phase difference between two amplitudes coupling the proton target with Jzp=±1/2 to the same final-state, the same amplitudes which are necessary to produce a nonzero proton anomalous magnetic moment. We show that the exchange of gauge particles between the outgoing quark and the proton spectators produces a Coulomb-like complex phase which depends on the angular momentum Lz of the proton's constituents and is thus distinct for different proton spin amplitudes. The single-spin asymmetry which arises from such final-state interactions does not factorize into a product of distribution function and fragmentation function, and it is not related to the transversity distribution δq(x,Q) which correlates transversely polarized quarks with the spin of the transversely polarized target nucleon.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号