Liquid-phase oxidation of hydrocarbons in the presence of different types of phase-transfer reagents |
| |
Authors: | L szl J. Cs nyi,K roly J ky |
| |
Affiliation: | Institute of Inorganic and Analytical Chemistry, A. József University, P.O. Box 440, H-6701, Szeged, Hungary |
| |
Abstract: | The autoxidation of cyclohexene, tetralin and cumene was investigated in the presence of non-ionic, anionic and cationic surfactants and it was found that all three types of phase-transfer reagents are able to influence the rate of oxidation. If their HLB values are not too low (> 3) or not too high (< 15) all the non-ionic surfactants increase the rate of oxidation, otherwise they exert a slight inhibitory effect. If present in acid form, anionic surfactants all increase the rate of oxidation, while their Na-salts slightly inhibit the oxidation. Cationic surfactants all increase the autoxidation rate, but their catalytic efficiencies depend strongly on the experimental conditions. It was shown that the phosphonium ion-type surfactants are quickly oxidized by hydroperoxide present, but their catalytic and phase-transfer capabilities are not detectably reduced. In biphasic systems, the catalytic activities of cationic surfactants are strongly reduced by the presence of water as a separate phase. Light scattering measurements demonstrated that all three types of surfactants are prone to self-association when their concentrations are increased, and this limits their influence on the rate of oxidation. The oxidation rate is strongly reduced when non-ionizing but strongly solvating solvents are simultaneously applied in the reaction mixture. The rate-diminishing effect seems to correlate with the sequence of solvating ability of the solvents. It was pointed out that the presence of hydroperoxide is essential for the PTC-catalyzed oxidation of hydrocarbons. It is thought that the cationic and the anionic surfactants interact with the more nucleophilic (the inner one) and the more electrophilic (the outer one) O-atom of hydroperoxide, respectively, whereby homolysis of the O---O bond is facilitated. The non-ionic surfactants exert their rate-influencing effects through H-bond formation. In the PTC-catalyzed oxidation of hydrocarbons, the rate changes linearly only in a narrow range of PTC, hydroperoxide and substrate concentrations, and consequently the turnover number is not suitable to characterize the oxidation. |
| |
Keywords: | Hydrocarbon Autoxidation Phase-transfer catalysis Self-association of surfactants |
本文献已被 ScienceDirect 等数据库收录! |
|