首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Antibody-catalyzed benzoin oxidation as a mechanistic probe for nucleophilic catalysis by an active site lysine
Authors:Sklute Genia  Oizerowich Rachel  Shulman Hagit  Keinan Ehud
Institution:Department of Chemistry and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
Abstract:Aldolase antibody 24H6, which was obtained by reactive immunization against a 1,3-diketone hapten, is shown to catalyze additional reactions, including H/D exchange and oxidation reactions. Comparison of the H/D exchange reaction at the alpha-position of a wide range of aldehydes and ketones by 24H6 and by other aldolase antibodies, such as 38C2, pointed at the significantly larger size of the 24H6 active site. This property allowed for the catalysis of the oxidation of substituted benzoins to benzils by potassium ferricyanide. This reaction was used as a mechanistic probe to learn about the initial steps of the 24H6-catalyzed aldol condensation reaction. The Hammett correlation (rho=4.7) of log(k(cat)) versus the substituent constant, sigma, revealed that the reaction involves rapid formation of a Schiff base intermediate from the ketone and an active site lysine residue. The rate-limiting step in this oxidation reaction is the conversion of the Schiff base to an enamine intermediate. In addition, linear correlation (rho=3.13) was found between log(K(M)) and sigma, indicating that electronic rather than steric factors are dominant in the antibody-substrate binding phenomenon and confirming that the reversible formation of a Schiff base intermediate comprises part of the substrate-binding mechanism.
Keywords:aldol reaction  catalytic antibodies  reaction mechanisms  Schiff bases
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号