首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Self-assembly of 2D-electrolytes into heterostructured nanofibers
Institution:1. Centre for Advanced 2D Materials, National University of Singapore, 117546, Singapore;2. Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore;3. Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
Abstract:2D materials can be functionalised with various ionisable functional groups of different formal charges, forming the so-called 2D electrolytes. In this study, 2D electrolytes based on functionalised graphene oxide (GO) with cationic groups (-NH3+) and molybdenum disulfide (MoS2) with anionic groups (-COO-) were used to form heterostructures through a self-assembly process. Due to the presence of opposite charges, heterostructures were formed by the predominantly attractive forces between the 2D electrolytes in a fluidic aqueous environment. With the application of sonication, both 2D materials were able to overcome the energy barrier offered by their bending stiffness, continuously assembling and scrolling into heterostructured nanofibers. The nanofibers were the product of the conjugated 2D electrolytes, which led to their phase separation and precipitation into highly ordered and high aspect ratio 1D structures. As the reaction proceeds, long nanofiber bundles with branches were formed, resembling the structures formed by naturally occurring polyelectrolytes such as amino acids forming proteins. This method offers a facile approach for the continuous processing of heterostructured nanofibers with a low production cost under flow that can be widely applied in textiles, encapsulation technologies, and nanosensors.
Keywords:Graphene oxide  Molybdenum disulfide  Fibers  2D/1D materials  Self-ordering
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号