首页 | 本学科首页   官方微博 | 高级检索  
     检索      

充气型放电毛细管的密度测量及磁流体模拟
引用本文:董克攻,吴玉迟,郑无敌,朱斌,曹磊峰,何颖玲,马占南,刘红杰,洪伟,周维民,赵宗清,焦春晔,温贤伦,魏来,臧华平,余金清,谷渝秋,张保汉,王晓方.充气型放电毛细管的密度测量及磁流体模拟[J].物理学报,2011,60(9):95202-095202.
作者姓名:董克攻  吴玉迟  郑无敌  朱斌  曹磊峰  何颖玲  马占南  刘红杰  洪伟  周维民  赵宗清  焦春晔  温贤伦  魏来  臧华平  余金清  谷渝秋  张保汉  王晓方
作者单位:(1)北京应用物理与计算数学研究所,北京 100088; (2)中国工程物理研究院激光聚变研究中心等离子体物理重点实验室,绵阳 621900; (3)中国工程物理研究院激光聚变研究中心等离子体物理重点实验室,绵阳 621900;中国科学技术大学近代物理系,中国科学院基础等离子体物理重点实验室,合肥 230026; (4)中国科学技术大学近代物理系,中国科学院基础等离子体物理重点实验室,合肥 230026
基金项目:国家自然科学基金面上项目(批准号: 10975121,10876039,11075160),中国工程物理研究院发展基金重点项目(批准号: 2009A0102003),国家自然科学基金青年基金(批准号: 10905051)资助的课题.
摘    要:在激光尾波场电子加速机理中,为了有效地加速电子,需要抑制衍射散焦等造成的激光传输不稳定性问题. 激光脉冲的稳定传输不仅有利于能量耦合给等离子体波,而且对电子束的注入及稳定加速有着重要影响,具有一定横向密度分布的充气型放电毛细管可以有效引导激光脉冲的传输. 利用等离子体的Stark展宽效应对毛细管产生的等离子体进行密度测量,给出了等离子体密度与充气压强之间的关系. 利用磁流体程序CRMHA对毛细管的放电特性进行了模拟,研究了毛细管引导效应的形成机理. 关键词: 充气型放电毛细管 Stark展宽 磁流体模拟 引导

关 键 词:充气型放电毛细管  Stark展宽  磁流体模拟  引导
收稿时间:9/2/2010 12:00:00 AM

Density measurement and MHD simulation ofgas-filled capillary discharge waveguide
Dong Ke-Gong,Wu Yu-Chi,Zheng Wu-Di,Zhu Bin,Cao Lei-Feng,He Ying-Ling,Ma Zhan-Nan,Liu Hong-Jie,Hong Wei,Zhou Wei-Min,Zhao Zong-Qing,Jiao Chun-Ye,Wen Xian-Lun,Wei Lai,Zang Hua-Ping,Yu Jin-Qing,Gu Yu-Qiu,Zhang Bao-Han and Wang Xiao-Fang.Density measurement and MHD simulation ofgas-filled capillary discharge waveguide[J].Acta Physica Sinica,2011,60(9):95202-095202.
Authors:Dong Ke-Gong  Wu Yu-Chi  Zheng Wu-Di  Zhu Bin  Cao Lei-Feng  He Ying-Ling  Ma Zhan-Nan  Liu Hong-Jie  Hong Wei  Zhou Wei-Min  Zhao Zong-Qing  Jiao Chun-Ye  Wen Xian-Lun  Wei Lai  Zang Hua-Ping  Yu Jin-Qing  Gu Yu-Qiu  Zhang Bao-Han and Wang Xiao-Fang
Institution:Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;Key Laboratory of Basic Plasma Physics of Chinese Academy of Sciences, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;Key Laboratory of Basic Plasma Physics of Chinese Academy of Sciences, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;Key Laboratory of Basic Plasma Physics of Chinese Academy of Sciences, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;Key Laboratory of Basic Plasma Physics of Chinese Academy of Sciences, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract:To accelerate the electrons efficiently in the laser wake-field accelerator, it is necessary to suppress the instability induced by the diffraction and the defocusing of the laser pulse. The gas-filled capillary discharge waveguide can generate an approximately parabolic density distribution, which can guide the laser pulse efficiently and suppress the instability. Using the Stark effect, this plasma density distribution is measured in this paper, and the relationship between plasma density and filled pressure is presented. By using the MHD code CRMHA, the formation of the capillary waveguide is simulated and researched in detail.
Keywords:gas-filled capillary discharge waveguide  Stark broadening  MHD simulation  guiding
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号