首页 | 本学科首页   官方微博 | 高级检索  
     

主成分分析法与植被指数经验方法估测冬小麦条锈病严重度的对比研究
引用本文:陈云浩,蒋金豹,黄文江,王圆圆. 主成分分析法与植被指数经验方法估测冬小麦条锈病严重度的对比研究[J]. 光谱学与光谱分析, 2009, 29(8): 2161-2165. DOI: 10.3964/j.issn.1000-0593(2009)08-2161-05
作者姓名:陈云浩  蒋金豹  黄文江  王圆圆
作者单位:北京师范大学资源学院,北京,100875;北京师范大学资源学院,北京,100875;中国矿业大学资源与安全工程学院,北京,100083;国家农业信息化工程技术研究中心,北京,100089
基金项目:国家高技术研究发展计划(863计划),国际科技合作计划项目,国家自然科学基金 
摘    要:通过人工田间诱发不同等级小麦条锈病,在不同生育期测定染病冬小麦冠层光谱及其病情指数(disease index,DI)。利用主成分分析法提取冠层光谱350~1 350 nm范围内的前5个主成分(principal components,PCs),以及一阶微分光谱在蓝边(490~530 nm),黄边(550~582 nm)和红边(630~673 nm)内的前3个PCs,并利用逐步回归法建立反演模型,其结果分别与植被指数经验模型进行对比,结果表明:以一阶微分PCs为变量的模型精度优于其他模型,其RMSE为7.65,相对误差为15.59%。通过对预测值与实测值对比发现,以微分指数SDr′/SDg′为变量的模型适合监测冬小麦早期病情,而以一阶微分PCs为变量的模型特别适合监测冬小麦条锈病病情较严重期。研究结果对利用高光谱遥感监测与评估小麦病害程度具有实际应用价值。

关 键 词:高光谱遥感  条锈病  小麦  主成分分析  病情指数  反演模型
收稿时间:2008-06-08

Comparison of Principal Component Analysis with VI-Empirical Approach for Estimating Severity of Yellow Rust of Winter Wheat
CHEN Yun-hao,JIANG Jin-bao,HUANG Wen-jiang,WANG Yuan-yuan. Comparison of Principal Component Analysis with VI-Empirical Approach for Estimating Severity of Yellow Rust of Winter Wheat[J]. Spectroscopy and Spectral Analysis, 2009, 29(8): 2161-2165. DOI: 10.3964/j.issn.1000-0593(2009)08-2161-05
Authors:CHEN Yun-hao  JIANG Jin-bao  HUANG Wen-jiang  WANG Yuan-yuan
Affiliation:1. College of Resources Science and Technology, Beijing Normal University, Beijing 100875, China2. College of Resources and Safety Engineering, China University of Mining and Technology, Beijing 100083, China3. National Engineering Research Center for Information Technology in Agriculture, Beijing 100089, China
Abstract:The canopy reflectance of winter wheat infected by yellow rust with different severity was measured through artificial inoculation,and the disease index (DI) of the wheat corresponding to the spectra acquired in the field was obtained. Principal component analysis(PCA)was used to compute the first 5 principal components (PCs) of canopy spectra in the 350-1 350 nm range and the first 3 PCs of first-order derivative in blue edge (490-530 nm),yellow edge (550-582 nm) and red edge (630-673 nm),respectively. Ste...
Keywords:Hyperspectral remote sensing  Yellow rust  Wheat  Principal component analysis(PCA)  Disease index(DI)  Inversion model
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号