首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fictive temperature measurement of amorphous SiO2 films by IR method
Institution:Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, School of Engineering, 110 8th Street, Troy, NY 12180-3590, USA
Abstract:The structure and properties of amorphous materials, in general, change with their thermal history. This is usually explained using the concept of fictive temperature, i.e., the temperature at which the super-cooled liquid state turned into a glassy state. In earlier studies, a simple IR method was used to determine the fictive temperature of silica glasses, both bulk and fiber. In the present study the applicability of the same technique for thin amorphous silica films on silicon was examined. It was found that the IR absorption as well as reflection peak wavenumber of the silica structural band can be used to determine the fictive temperature of amorphous silica films on silicon with an unknown thermal history. Specifically, IR absorbance spectra of an amorphous silica film of thickness greater than 0.5 μm grown on silicon can be taken before and after etching a thin surface layer of 20–30 nm and the peak wavenumber of the difference signal can be compared with the pre-determined calibration curve to convert the peak wavenumber to the fictive temperature. For a film thicker than ∼2 μm, IR reflection peak wavenumber can be converted directly to the fictive temperature of the film by using the calibration curve.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号