首页 | 本学科首页   官方微博 | 高级检索  
     


Determination of the in-plane anisotropy field in hexagonal systems via rotational magnetization: Theoretical model and Monte Carlo simulations
Authors:AiMin Wang and Hua Pang
Affiliation:(1) Institute of Applied Magnetics, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
Abstract:
The magnetic anisotropy field in thin films with in-plane uniaxial anisotropy can be deduced from the VSM magnetization curves measured in magnetic fields of constant magnitudes. This offers a new possibility of applying rotational magnetization curves to determine the first- and second-order anisotropy constant in these films. In this paper we report a theoretical derivation of rotational magnetization curve in hexagonal crystal system with easy-plane anisotropy based on the principle of the minimum total energy. This model is applied to calculate and analyze the rotational magnetization process for magnetic spherical particles with hexagonal easy-plane anisotropy when rotating the external magnetic field in the basal plane. The theoretical calculations are consistent with Monte Carlo simulation results. It is found that to well reproduce experimental curves, the effect of coercive force on the magnetization reversal process should be fully considered when the intensity of the external field is much weaker than that of the anisotropy field. Our research proves that the rotational magnetization curve from VSM measurement provides an effective access to analyze the in-plane anisotropy constant K 3 in hexagonal compounds, and the suitable experimental condition to measure K 3 is met when the ratio of the magnitude of the external field to that of the anisotropy field is around 0.2. Supported by the National Natural Science Foundation of China (Grant Nos. 90505007 and 10774061) Recommended by LI FaShen
Keywords:rotational magnetization curve  magnetocrystalline anisotropy  in-plane anisotropy constant K 3
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号