首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nitric oxide as an electron donor, an atom donor, an atom acceptor, and a ligand in reactions with atomic transition-metal and main-group cations in the gas phase
Authors:Blagojevic Voislav  Flaim Eric  Jarvis Michael J Y  Koyanagi Gregory K  Bohme Diethard K
Institution:Department of Chemistry, Centre for Research in Mass Spectrometry and Centre for Research in Earth and Space Science, York University, Toronto, Ontario, Canada M3J 1P3.
Abstract:The room-temperature reactions of nitric oxide with 46 atomic cations have been surveyed systematically across and down the periodic table using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. Rate coefficients and product distributions were measured for the reactions of first-row cations from K+ to Se+, of second-row cations from Rb+ to Te+ (excluding Tc+), and of third-row cations from Cs+ to Bi+. Reactions both first and second order in NO were identified. The observed bimolecular reactions were thermodynamically controlled. Efficient exothermic electron transfer was observed with Zn+, As+, Se+, Au+, and Hg+. Bimolecular O-atom transfer was observed with Sc+, Ti+, Y+, Zr+, Nb+, La+, Hf+, Ta+, and W+. Of the remaining 32 atomic ions, all but 8 react in novel termolecular reactions second order in NO to produce NO+ and the metal-nitrosyl molecule, the metal-monoxide cation and nitrous oxide, and/or the metal-nitrosyl cation. K+, Rb+, Cs+, Ga+, In+, Tl+, Pb+, and Bi+ are totally unreactive. Further reactions with NO produce the dioxide cations CaO2+, TiO2+, VO2+, CrO2+, SrO2+, ZrO2+, NbO2+, RuO2+, BaO2+, HfO2+, TaO2+, WO2+, ReO2+, and OsO2+ and the still higher order oxides WO3+, ReO3+, and ReO4+. NO ligation was observed in the formation of CaO+(NO), ScO+(NO), TiO+(NO), VO+(NO)(1-3), VO2+(NO)(1-3), SrO+(NO), SrO2+(NO)1,2, RuO+(NO)(1-3), RuO2+(NO)1,2, OsO+(NO)(1-3), and IrO+(NO). The reported reactivities for bare atomic ions provide a benchmark for reactivities of ligated atomic ions and point to possible second-order NO chemistry in biometallic and metal-surface environments leading to the conversion of NO to N2O and the production of metal-nitrosyl molecules.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号