首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computation of solidification problems with hydrodynamic convection resolving energetic anisotropies at the microscale quantitatively
Authors:R Siquieri  H Emmerich  M Jurgk
Institution:1.Computational Materials Engineering, Center for Computational Engineering Science, Institute of Minerals Engineering, RWTH Aachen University,Aachen,Germany;2.Max-Planck-Institute for Physics of Complex Systems,Dresden,Germany
Abstract:In this work we propose a new numerical approach to solve the solidification of microstructures from a pure melt including hydrodynamic effects in the molten phase. The model is based on the classical sharp-interface model, i.e the solid–liquid interface is tracked and latent heat is released. An enhanced scheme is employed to solve fluid flow in the melt. The no-slip condition is applied on the interface by enforcing the velocities in the solid phase to be zero. The morphology evolution of the solidifying crystal microstructure under the influence of convection is compared with an existing morphology diagram for pure diffusion controlled growth (see Brener et al. 1]). The peculiarity of our approach is that it models the physical anisotropies along the solid–liquid interface with high accuracy. This allows us to report changes in the morphology diagram given by Brener et al. 1] due to the influence of forced flow. Moreover, we present some results on the scaling of the dendritic tip in such cases.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号