首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spectral Gap and Exponential Decay of Correlations
Authors:Matthew B Hastings  Tohru Koma
Institution:(1) Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;(2) Department of Physics, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
Abstract:We study the relation between the spectral gap above the ground state and the decay of the correlations in the ground state in quantum spin and fermion systems with short-range interactions on a wide class of lattices. We prove that, if two observables anticommute with each other at large distance, then the nonvanishing spectral gap implies exponential decay of the corresponding correlation. When two observables commute with each other at large distance, the connected correlation function decays exponentially under the gap assumption. If the observables behave as a vector under the U(1) rotation of a global symmetry of the system, we use previous results on the large distance decay of the correlation function to show the stronger statement that the correlation function itself, rather than just the connected correlation function, decays exponentially under the gap assumption on a lattice with a certain self-similarity in (fractal) dimensions D < 2. In particular, if the system is translationally invariant in one of the spatial directions, then this self-similarity condition is automatically satisfied. We also treat systems with long-range, power-law decaying interactions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号