首页 | 本学科首页   官方微博 | 高级检索  
     


Colorimetric method for determination of bisphenol A based on aptamer-mediated aggregation of positively charged gold nanoparticles
Authors:Xu  Jingyue  Li  Ying  Bie  Jiaxin  Jiang  Wei  Guo  Jiajia  Luo  Yeli  Shen  Fei  Sun  Chunyan
Affiliation:1.Department of Food Quality and Safety, Jilin University, Changchun, 130062, China
;2.Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, China
;
Abstract:

A sensitive, specific and rapid colorimetric aptasensor for the determination of the plasticizer bisphenol A (BPA) was developed. It is based on the use of gold nanoparticles (AuNPs) that are positively charged due to the modification with cysteamine which is cationic at near-neutral pH values. If aptamers are added to such AuNPs, aggregation occurs due to electrostatic interactions between the negatively-charged aptamers and the positively-charged AuNPs. This results in a color change of the AuNPs from red to blue. If a sample containing BPA is added to the anti-BPA aptamers, the anti-BPA aptamers undergo folding via an induced-fit binding mechanism. This is accompanied by a conformational change, which prevents the aptamer-induced aggregation and color change of AuNPs. The effect was exploited to design a colorimetric assay for BPA. Under optimum conditions, the absorbance ratio of A 527/A 680 is linearly proportional to the BPA concentration in the range from 35 to 140 ng∙mL−1, with a detection limit of 0.11 ng∙mL−1. The method has been successfully applied to the determination of BPA in spiked tap water and gave recoveries between 91 and 106 %. Data were in full accordance with results obtained from HPLC. This assay is selective, easily performed, and in our perception represents a promising alternative to existing methods for rapid quantification of BPA.

 loading=

The negatively-charged anti-BPA aptamers can absorb onto the positively-charged cysteamine-capped AuNPs (cysteamine-AuNPs) via electrostatic interactions, which can cause the aggregation of AuNPs accompanied by a red-to-blue color change. In the presence of BPA, the specific binding of BPA to the aptamers induces the conformation changes of anti-BPA aptamers, which can release the aptamers from cysteamine-AuNPs and thus prevent the aggregation and color change of cysteamine-AuNPs.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号