首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biocatalytic metal nanopatterning through enzyme-modified microelectrodes
Authors:Malel  Esteban  Mandler  Daniel
Institution:1.Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
;
Abstract:

The formation of narrow-size distribution nanomaterials on surfaces in defined patterns is a research area of great interest due to its relevance in many applications such as catalysis, optoelectronics, and sensing devices. Patterning surface with nanostructures has been achieved by numerous techniques including electron-beam lithography, microcontact printing, constructive lithography, and different scanning probe microscopy techniques. Here, we present a different approach by which gold patterns are formed by an enzyme-catalyzed reaction followed by a surface-catalyzed process. Our study takes the advantage of scanning electrochemical microscopy (SECM) where the tip is modified with an enzyme and generates a reductant. The latter participates in an electroless deposition reaction, where AuCl4 is reduced catalyzed by a Pd surface. The result is local deposition of gold patterns made of nanoparticles as soon as the reductant generated by the tip, i.e., hydroquinone, approaches the Pd surface. Two enzymes were used: glucose oxidase (GOx) and alkaline phosphatase (ALP). The entire process was carefully studied and optimized, which enabled a good control of the patterns formed.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号