首页 | 本学科首页   官方微博 | 高级检索  
     


Quinobis(imidazolylidene): Synthesis and Study of an Electron‐Configurable Bis(N‐Heterocyclic Carbene) and Its Bimetallic Complexes
Authors:Andrew G. Tennyson Dr.  Robert J. Ono  Todd W. Hudnall Dr.  Dimitri M. Khramov Dr.  Joyce A. V. Er  Justin W. Kamplain Dr.  Vincent M. Lynch Dr.  Jonathan L. Sessler Prof.  Christopher W. Bielawski Prof.
Affiliation:Department of Chemistry & Biochemistry, The University of Texas at Austin, Austin, TX 78712 (USA)
Abstract:Reaction of bromanil with N,N′‐dimesitylformamidine followed by deprotonation with NaN(SiMe3)2 afforded 1,1′,3,3′‐tetramesitylquinobis(imidazolylidene) ( 1 ), a bis(N‐heterocyclic carbene) (NHC) with two NHC moieties connected by a redox active p‐quinone residue, in 72 % yield of isolated compound. Bimetallic complexes of 1 were prepared by coupling to FcN3 ( 2 ) or FcNCS ( 3 ; Fc=ferrocenyl) or coordination to [M(cod)Cl] ( 4 a or 4 b , where M=Rh or Ir, respectively; cod=1,5‐cyclooctadiene). Treatment of 4 a and 4 b with excess CO(g) afforded the corresponding [M(CO)2Cl] complexes 5 a and 5 b , respectively. Analysis of 2 – 5 by NMR spectroscopy and X‐ray diffraction indicated that the electron‐deficient quinone did not significantly affect the inherent spectral properties or coordination chemistry of the flanking imidazolylidene units, as compared to analogous NHCs. Infrared spectroscopy and cyclic voltammetry revealed that decreasing the electron density at MLn afforded an increase in the stretching energy and a decrease in the reduction potential of the quinone, indicative of metal–quinone electronic interaction. Differential pulse voltammetry and chronoamperometry of the metal‐centered oxidations in 2 – 4 revealed two single, one‐electron peaks. Thus, the metal atoms bound to 1 are oxidized at indistinguishable potentials and do not appear electronically coupled. However, the metal–quinone interaction was used to increase the electron density at coordinated metal atoms. Infrared spectroelectrochemistry revealed that the average νCO values for 5 a and 5 b decreased by 14 and 15 cm?1, respectively, upon reduction of the quinone embedded within 1 . These shifts correspond to 10 and 12 cm?1 decreases in the Tolman electronic parameter of this ditopic ligand.
Keywords:bimetallic complexes  carbene ligands  electrochemistry  ligand design  quinones
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号