The Effect of Backbone Stereochemistry on the Folding of Acyclic β2, 3‐Aminoxy Peptides |
| |
Authors: | Yu‐Hui Zhang Prof. Dr. Kesheng Song Dr. Nian‐Yong Zhu Dr. Dan Yang Prof. Dr. |
| |
Affiliation: | 1. Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China), Fax: (+852)?2859‐2159;2. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China) |
| |
Abstract: | As a new type of foldamer, β‐aminoxy peptides have the ability to adopt novel β N? O turns or β N? O helices in solution. Herein, we describe a new subclass of β‐aminoxy peptide, that is, peptides of acyclic β2, 3‐aminoxy acids (NH2OCHR1CHR2COOH), in which the presence of two chiral centers provides insight into the effect of backbone stereochemistry on the folding of β‐aminoxy peptides. Acyclic β2, 3‐aminoxy peptides with syn and anti configurations have been synthesized and their conformations investigated by NMR, IR, and circular dichroism (CD) spectroscopic, and X‐ray crystallographic analysis. The β N? O turns or β N? O helices, which feature nine‐membered rings with intramolecular hydrogen bonds and have been identified previously in peptides of β3‐ and β2, 2‐aminoxy acids, are also predominantly present in the acyclic β2, 3‐aminoxy peptides with a syn configuration and N? O bonds gauche to the Cα? Cβ bonds in both solution and the solid state. In the acyclic β2, 3‐aminoxy peptides with an anti configuration, an extended strand (i.e., non‐hydrogen‐bonded state) is found in the solid state, and several conformations including non‐hydrogen‐bonded and intramolecular hydrogen‐bonded states are present simultaneously in nonpolar solvents. These results suggest that the backbone stereochemistry does affect the folding of the acyclic β2, 3‐aminoxy peptides. Theoretical calculations on the conformations of model acyclic β2, 3‐aminoxy peptides with different backbone stereochemistry were also conducted to elucidate structural characteristics. Our present work may provide useful guidelines for the design and construction of new foldamers with predicable structures. |
| |
Keywords: | aminoxy acids conformation analysis foldamers peptidomimetics stereochemistry |
|
|